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ABSTRACT

The bias correction of climate model outputs is based on the main assumption of the time invariance of the

bias, in which the statistical relationship between observations and climate model outputs in the historical

period stays constant in the future period. The present study aims to assess statistical bias correction under

nonstationary bias conditions and its implications on the simulated streamflow over two snowmelt-driven

Canadian catchments. A pseudoreality approach is employed in order to derive a proxy of future observa-

tions. In this approach, CRCM–ECHAM5 ensemble simulations are used as pseudoreality observations to

correct for bias in the CRCM–CGCM3 ensemble simulations in the reference (1971–2000) period. The cli-

mate model simulations are then bias corrected in the future (2041–70) period and compared with the future

pseudoreality observations. This process demonstrates that biases (precipitation and temperature) remain

after the bias correction. In a second step, the uncorrected and bias-corrected CRCM–CGCM3 simulations

are used to drive the Soil andWater Assessment Tool (SWAT) hydrological model in both periods. The bias

correction decreases the error on meanmonthly streamflow over the reference period; such findings are more

mixed over the future period. The results of various hydrological indicators show that the climate change

signal on streamflow obtainedwith uncorrected and bias-corrected simulations is similar in both its magnitude

and its direction for the mean monthly streamflow only. Regarding the indicators of extreme hydrological

events, moremixed results are foundwith site dependence. All in all, bias correction under nonstationary bias

is an additional source of uncertainty that cannot be neglected in hydrological climate change impact studies.

1. Introduction

The assessment of climate change impacts on water

resources is generally based on a hydroclimate model

chain that consists of a combination of projections of

global climate models (GCMs), which are often dy-

namically downscaled by regional climate models

(RCMs). The variables of climate models are then used

as inputs to hydrological models to project potential

future changes on water resources (Muerth et al. 2013).

However, it is desired to apply postprocessing methods

(such as bias correction) to adjust the variables to cor-

rect for climate model biases rather than using raw cli-

mate model outputs to drive hydrological models (Ho

et al. 2012).

Model biases (or systematic model errors) are defined

as systematic differences between model simulations

and observations (Jung 2005; Teutschbein and Seibert

2013). Therefore, the bias correction (BC) of climate

model outputs adjusts the climate model meteorological

variables with respect to station observations with a

correction function, so that the main characteristics of

the climate model variables match the observed char-

acteristics. This function is then applied to future climate

model outputs under the assumption that the statistical
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relationship between the model outputs and the obser-

vations in the current period stays constant in the future,

that is, under the assumption of the time invariance of

the climate model bias (Chen et al. 2013b; Teutschbein

and Seibert 2013; Ho et al. 2012; Ehret et al. 2012;

Maraun 2012; Haerter et al. 2011; Vannitsem 2011).

However, the validity of this assumption has been

questioned (Ehret et al. 2012). Christensen et al. (2008)

explored the bias in the simulated monthly mean tem-

perature and precipitation from an ensemble of 13

RCMs forced with ERA-40 for a historical 40-yr period

over Europe. They revealed the nonlinear behavior of

model biases as a function of increasing temperatures or

precipitation amounts, suggesting that model biases may

not be invariant in a changing climate. Maurer et al.

(2013) showed that, for a 50-yr historical period over the

United States, the bias in GCM outputs, on average, is

statistically the same between two sets of years; how-

ever, some GCM biases are variable in time, depending

on the meteorological variable and the geographical

location. Chen et al. (2013a) evaluated the precipitation

biases in a 20-yr time series by dividing the dataset into

two periods (odd and even years) for two North

American catchments. They found relatively large dif-

ferences in biases between odd and even years and

suggested that differences in biases between the periods

of calibration and validation are a possible cause of the

lack of coherence between modeled and corrected pre-

cipitation time series.

The validity of the time-invariance assumption of the

climate model bias has important implications for im-

pact studies and needs to be verified to properly address

uncertainty in future climate projections. However, this

assumption cannot be directly validated since the future

observations are, by definition, unknown. To fill this gap,

the pseudoreality approach (i.e., the use of climate

model outputs as pseudo-observations or proxies of fu-

ture conditions; Vrac et al. 2007) can be considered as an

alternative to provide some insights into the statio-

narity of climate model bias. For instance, Maraun

(2012) used this approach to assess the stationarity of

the climate model bias with an ensemble of four RCMs

(driven by one GCM run) over Europe. The differ-

ences of bias between the present and future periods

was assessed by considering one RCM as pseudoreality

observations and the other three as climate model

simulations. The results showed that biases are rela-

tively stable, stable enough that bias correction im-

proves scenarios for impact studies. However, some

nonstationary biases were identified for regions where

the future physical processes are expected to have

important changes. Maraun (2012) pointed out that

nonstationary biases would probably be caused by

changes in future physical processes that are expected

to change significantly, such as snow cover, ice albedo,

or clouds.

Räisänen and Räty (2013) used intermodel cross val-

idation to assess the performance of various post-

processing methods in projecting future climate. From a

set of six RCMs, each model at its time is selected as a

pseudotruth (i.e., verifying model), against which the

projections constructed using the rest of themodels (i.e.,

predicting models) are verified. The procedure is cycled

over all model combinations and the results averaged

over the verifying models to obtain overall verification

statistics for the methods. The authors showed that no

single method performs best under all circumstances,

and the performance of the methods depends on season

and location.

Velázquez et al. (2014, unpublished manuscript) as-

sessed the use of GCM simulations as pseudoreality

observations in order to evaluate the time-invariance

assumption of climate model biases (for temperature

and precipitation) over the North American territory.

They showed that the bias between two GCMs is com-

parable to the bias between observed data and one

GCM in terms of magnitude and spatial and temporal

structures. By considering one GCM ensemble simu-

lation as pseudoreality observations and the other

GCM ensemble simulations as climate simulations,

they estimated the biases in the reference and future

periods. They found that the differences between

model simulations and observations vary between

periods. In addition, the authors showed that such

differences were not entirely caused by the internal

variability of the climate model and suggested that this

methodology will make it possible to evaluate the ef-

fect of nonstationary bias in hydrological climate

change impact studies.

Bias-correction methods were evaluated and com-

pared for their use in hydrological impact studies under

the assumption of the time invariance of the climate

model bias (e.g., Mpelasoka and Chiew 2009; Themeßl
et al. 2011; Teutschbein and Seibert 2012; Chen at al.

2013b; Troin et al. 2015). Only the study of Teutschbein

and Seibert (2013) has evaluated the performance of

several bias-correction methods under varying climate

conditions by performing a differential split-sample test

on outputs from different RCMs over a 40-yr (1961–

2000) period. They showed that more advanced

correction methods (e.g., quantile–quantile mapping)

perform better than simpler methods (e.g., local in-

tensity scaling) when tested under contrasting climatic

conditions.

The present study aims to evaluate the performance of

one statistical bias-correction method when the climate
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model bias is not time invariant and to determine its

implications on hydrological climate change impact

studies. In particular, this study focuses on

1) the error of the bias correction (for precipitation and

temperature) in the future period when it is based on

the hypothesis of the time invariance of the bias and

2) the effect of such error on the projected changes for

hydrological indicators.

The pseudoreality approach is used in this study. The

Soil and Water Assessment Tool (SWAT) hydrologi-

cal model is fed by uncorrected and bias-corrected cli-

mate model outputs, which constitutes the hydroclimate

model chain. A set of hydrological indicators is then

estimated based on the hydrological simulations ob-

tained for two Canadian catchments for the present and

future periods.

The study is organized as follows: section 2 introduces

the climate data and methodology, section 3 presents

results, and a discussion and concluding remarks appear

in section 4.

2. Data and methods

a. The climate ensemble simulations

The GCM ensemble simulations used in this work are

the five members of the CCCma Coupled Global Cli-

mate Model, version 3 (CGCM3; Scinocca et al. 2008),

and the three members of the Max Planck Institute for

Meteorology ECHAM5 model (Jungclaus et al. 2006)

under IPCC SRES A2 greenhouse gas emissions. The

Canadian Regional Climate Model (CRCM), version

4.2.3, derived as an evolution of its previous versions

(Caya and Laprise 1999; Laprise et al. 2003; Plummer

et al. 2006), is the regional model used for the present

investigation. The CRCM uses the Bechtold–Kain–

Fritsch convective scheme (Bechtold et al. 2001). The

simulated region covers the large North American do-

main (AMNO; 200 3 192 grid points) with a horizontal

gridpoint spacing of 45 km (true at 608N; Troin

et al. 2015).

b. The pseudoreality approach

The pseudoreality approach includes an ensemble of

CRCM simulations and a hydrological model. The

pseudoreality approach considers one climate model

simulation as pseudoreality observations (in present and

future periods) in order to evaluate the effect of non-

stationary bias on hydrological indicators. Climate

model simulations are interchangeable as pseudoreality

observations. The CRCM–CGCM3 simulations are used

as the ensemble simulations to be corrected. Each

CRCM–ECHAM5 simulation is considered as a pseu-

doreality and is used to correct the bias in the CRCM–

CGCM3 simulations. Considering each pseudoreality

observation for correcting the bias in the climate model

simulations makes it possible to assess the effect re-

sulting from the availability of various observations on

the bias-correction procedure.

The uncorrected and corrected CRCM–CGCM3

simulations are then used to drive the hydrological

model for the study catchments over the reference

(1971–2000) and future (2041–70) periods.

For the climate variables of interest, the monthly m

bias over the reference (ref) period is computed as

bTref
(m)

5Tref
sim(m) 2Tref

obs(m) (1)

and

bPref
(m)

5
Pref
sim(m)

Pref
obs(m)

2 1, (2)

where bTref
ðmÞ

and bPref
ðmÞ

are the biases in temperature and

precipitation, respectively; Tref
obs(m) and Pref

obsðmÞ are the

pseudoreality observed variable values; and Tref
simðmÞ and

Pref
sim(m) are the simulated variable values. The tempera-

ture is expressed in degrees Celsius and the precipitation

is expressed in percentage (or mmday21 when no rela-

tive bias is considered).

The biases in the future (fut) period bTfut and bPfut are

computed in a similar manner, based on the differences

between the future pseudoreality observations and the

simulated variable values.

c. The bias-correction method

A comprehensive assessment of BC methods was

conducted in many recent studies. Chen et al. (2013a)

assessed the performance of six BC methods over 10

North American catchments. They classified the BC

methods into mean- [e.g., linear scaling (Lenderink

et al. 2007) and local intensity scaling (Schmidli et al.

2006)] and distribution-based methods [e.g., daily

translation (DT; Mpelasoka and Chiew 2009) and

quantile mapping (Themeßl et al. 2011)]. They showed
that distribution-based methods are consistently better

than mean-based methods. Mpelasoka and Chiew

(2009) compared several postprocessing methods in

the construction of runoff projection across Australia

by using a lumped hydrological model. They showed

that distribution-based methods are better at repre-

senting extreme runoff than the mean-based method

because they take into account the increase in extreme

daily rainfall.
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The present study is conducted with the DT method,

which has proven to be one of the best-performing

methods in adjusting for model bias over the study

catchments (Troin et al. 2015). This method was also

used in many studies to correct bias in climate model

simulations in order to evaluate the climate change im-

pacts onwater resources (e.g., Levison 2013;Mehdi et al.

2013; CEHQ 2013; Kurylyk and MacQuarrie 2013; Sulis

et al. 2012). Despite the wide use of the DT method for

climate change impact studies, the efficacy of the

method is questioned. Maraun et al. (2010) pointed out

that the DT approach does explicitly not consider the

tail of the distribution, and extreme events might be

misrepresented. Maraun (2013) showed that the spatial

and temporal structures of the corrected time series are

misrepresented with the DT approach, the drizzle effect

for area means is overcorrected, and seasonal trends are

affected. To overcome these problems, the use of sto-

chastic bias correction is suggested (Wong et al. 2014).

In the present study, different correction factors

(differences in percentiles between pseudo-observed

and simulated data at the reference period) are ap-

plied to the frequency distribution of projected data for

the future period. The DT method is applied on a

monthly basis, and 100 percentiles are calculated for

each month. Each model member is adjusted separately

based on the transfer function established on the en-

semble mean. The corrected temperature and pre-

cipitation in the reference period are computed with the

following equations:

T(corr)refd 5Tref
sim(d) 1 [Tref

obs(m,q) 2Tref
sim(m,q)]

5Tref
sim(d) 2 bTref

ðm,qÞ
(3)

and

P(corr)refd 5Pref
d

2
4P

ref
obs(m,q)

Pref
sim(m,q)

3
55Pref

d

2
4 1

bPref
ðm,qÞ

1 1

3
5; (4)

where T(corr) and P(corr) are the bias-corrected vari-

ables and the indexes correspond to the percentile q,

monthly m time step, and daily d time step. For the fu-

ture period, the corrected precipitation and temperature

are obtained as

T(corr)futd 5Tfut
sim(d) 2 bTref

ðm,qÞ
(5)

and

P(corr)futd 5Pfut
d

2
4 1

bPref
ðm,qÞ

1 1

3
5: (6)

d. Description of the study catchments

Two Canadian catchments were selected to conduct

this analysis: the Outardes River basin (15 267km2) lo-

cated in the province of Quebec and the Nechako River

basin (25 105km2) located in the province of British

Columbia. The surface hydrology of these basins is

dominated by snowmelt processes. The catchments’ lo-

cations and topography are presented in Fig. 1, and the

general characteristics of the study basins are displayed

in Table 1.

The Outardes River basin presents an elevation range

from 80 to 1050m and the Nechako River basin has an

elevation range varying from 630 to 2800 m. Both

catchments are mainly covered by forest. The two

catchments are selected for this study because of their

geographical locations in different regions in terms of

FIG. 1. Location of the Nechako and Outardes River basins.
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topography and climate patterns. In addition, both ba-

sins are located in latitudes where the effects of pro-

jected warming are expected to be greatest (IPCC 2014).

For example, the projected changes in mean annual

temperature in central Quebec by the year 2050 (based

on the baseline period 1961–90) is likely to range from

2.38 to 4.98C, and the projected changes for mean annual

precipitation should vary between 6% and 14%

(DesJarlais et al. 2010). Regarding the Bulkley–

Nechako region of British Columbia, the projected

changes at year 2050 (from the baseline of the historical

1961–90 period) on mean annual temperature are ex-

pected to vary from 1.28 to 2.68C, while the change of

annual precipitation is projected to range between22%

and 14% (Pacific Climate Impacts Consortium 2012).

e. The hydrological model

The SWAThydrological catchmentmodel was chosen

for this study (Arnold et al. 1998). SWAT is a physically

based semidistributed model that operates at the daily

time step (Neitsch et al. 2002). The hydrological model

takes into account the spatial variability of the topog-

raphy, land use, and soil type in order to represent the

catchment in multiple hydrologic response units

(HRUs). The input variables required to run SWAT are

the daily precipitation and the daily maximum and

minimum air temperatures. The watershed hydrology in

SWAT is simulated in two steps. The first step is the land

phase of the hydrologic cycle that calculates the water

balance of each HRU in order to provide the amount of

water available for each subbasin main channel at a

given time step. The second step is the channel routing,

which determines the progress of water through the

river network toward the basin outlet (Neitsch et al.

2002). A detailed description of the model components

is presented in Neitsch et al. (2005).

Technical details on model implementation and cali-

bration as well as the statistical analysis of SWAT’s

performance at simulating streamflow over both

catchments are presented in Troin et al. (2014, manu-

script submitted to J. Hydrol.).

f. Hydrological indicators

Four hydrological indicators were selected to evaluate

the impact of the statistical bias correction under non-

stationary conditions on the catchment’s hydrology. The

hydrological indicators I are the following:

d The mean monthly streamflowQm, which is the mean

of all of the daily values (m3 s21) over a given

monthly period.
d The 2-yr return period high flow (HF2), which is the

flow exceeded on average every 2 years, or, in other

words, that has a 50% chance of being exceeded in any

given year.
d The 10-yr return period high flow (HF10), which is

the flow that has a 10% chance of being exceeded

in any given year. HF10 is an indicator of less

common flows. Both high-flow indicators are eval-

uated from the time series of each year’s maximum

daily runoff.
d The 2-yr return period 7-day low flow (L7F2), which is

calculated from a 7-day moving average applied on

daily runoff data. The lowest value over a year is kept

as the yearly low flow. A statistical distribution is fitted

to the series of yearly low flows to compute the low

flow that occurs statistically every 2 years.

To calculate L7F2 and HF2, it is assumed that the time

series follow the log Pearson III probability density

function (e.g., Muerth et al. 2013; Velázquez et al.

2013). These indicators are typically used to evaluate

the climate change impacts on water resources over

Quebec catchments (e.g., CEHQ 2013; Velázquez
et al. 2013).

The relative error E between indicators is esti-

mated as

E5
Irefsim2 Irefobs

Irefobs

, (7)

where E is the error computed in the reference period,

Irefobs is the value of the indicator as computed from the

pseudo-observed flows, and Irefsim is the indicator calcu-

lated from the simulated flows with the climate model

simulations.

The impact of climate change on hydrological in-

dicators DIsim is expressed as the differences of simu-

lated hydrological indicators from the reference Irefsim to

the future period Ifutsim:

DIsim5
Ifutsim2 Irefsim

Irefsim

: (8)

TABLE 1. General characteristics of the study basins. The type of

climate is based on the Köppen–Geiger classification (Peel

et al. 2007).

Nechako Outardes

Type of climate

warm summer

continental

continental

subarctic

Annual average

precipitation total (mm)

824 931

Snow ratio 41 36

Annual daily temperature (8C)
Min 240.2 245.9

Max 133.1 132.4

Mean 12.5 21.5
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3. Results and discussion

a. Climate model bias in reality and bias in
pseudoreality

The CRCM’s ability at reproducing observed climate

patterns with respect to station observations over both

catchments was evaluated in Troin et al. (2015). The

CRCM provides considerable biases in precipitation

and mean temperature over the two basins when com-

paring the simulated climate at the reference period

with the observations. The CRCM shows a cold bias,

particularly pronounced over the Nechako River basin.

The model overestimates precipitation over the Ne-

chako River basin while underestimating precipitation

of the Outardes River basin by a smaller amount.

Figure 2 shows the 30-yr mean monthly bias for tem-

perature and precipitation computed with Eqs. (1) and

(2). The bias in reality is calculated as the difference

between the climate simulations (CRCM–CGCM3

simulations) and the observations, while the bias in

pseudoreality is computed as the difference between the

climate simulations and each of the three pseudoreality

observations (from the CRCM–ECHAM5 ensemble).

For the Outardes River basin, bTref
max

is comparable in

reality and in pseudoreality between October and May.

For bTref
min
, the bias in reality and pseudoreality has similar

values in winter (December–February), but shows

smaller values in pseudoreality than in reality the rest of

the year. The bPref values in reality are somewhat cov-

ered in the envelope of bPref in pseudoreality. For the

Nechako River basin, bTref
max

and bTref
min

have smaller values

in pseudoreality than in reality. The envelope of bPref in

pseudoreality covers the bPref values in reality only for

the period extending from November to February.

The comparison of the biases in reality and in pseudo-

reality shows that, while they do share several fea-

tures, they are not exactly the same. As this study

focuses on the change in bias between two periods

and not on the bias itself, the proposed pseudoreality

approach can be used with confidence to evaluate

the effect of nonstationary bias on hydrological

indicators.

b. Evaluation of the BC performance under
nonstationary conditions

The DT method is applied to the CRCM outputs in

order to fit the distribution of temperature and pre-

cipitation (with a transfer function) with that of the

pseudo-observations in the reference period. The

transfer function is then applied to the meteorological

variables’ series in the future period.

Figures 3 and 4 show the scatterplots (for the Outardes

and Nechako River basins, respectively) of the

monthly precipitation bias bP and monthly minimum

FIG. 2. The 30-yr mean monthly bias in reality and pseudoreality (absolute value) for precipitation, max temperature,

and min temperature, as computed with Eqs. (1) and (2), for the (a)–(c) Outardes and (d)–(f) Nechako River basins over the 1971–

2000 period.
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temperature bias bTmin
, and also the scatterplots of bP

and monthly maximum temperature bias bTmax
. They

allow us to compare the structure of the bias before and

after bias correction in both the reference and future

periods. We can see that the bias is well corrected in the

reference period (Figs. 3b,f and 4b,f). However, the bias

correction changes the temporal structure of the bias

(Figs. 3d,h and 4d,h) in the future period. For instance,

bTmin
is mostly negative before correction over the

Outardes River basin (Figs. 3a,c), while bTmin
remaining

bias changes to positive values in the future period after

bias correction (Fig. 3d). Over the Nechako River basin,

bTmin
is mostly positive before bias correction (Figs. 4a,c)

and moves to negative values in the future period after

bias correction (Fig. 4d). Similar findings can be ob-

served for bTmax
(Figs. 4e,g,h).

The results reveal that, when the bias is not time in-

variant, the bias correction modifies the structure of the

bias in the future period. In other words, when an ex-

pected future cold bias in temperature is corrected, it

could lead, in the end, to a hot bias, as illustrated by the

Outardes River basin.

c. Annual hydrological cycle

Figure 5 shows the mean monthly streamflows simu-

lated by SWATwhen forced by the uncorrected CRCM–

CGCM3 simulations and the three pseudoreality obser-

vations over both basins in the reference period.

Over theOutardes River basin (Fig. 5a), the ensemble

mean of the CRCM–CGCM3 simulations captures the

spring peak flow. The mean monthly discharge is un-

derestimated in April by 60%, while it is overestimated

for the summer and autumn seasons by 15%–30%. The

Nechako River basin (Fig. 5b) shows a summer peak

flow that is quite well represented by the ensemblemean

of the CRCM–CGCM3 simulations. The differences in

mean monthly discharges between CRCM–CGCM3

and the pseudoreality observations are smaller over

that catchment; however, some discrepancies do exist.

For example, the CRCM–CGCM3 ensemble mean

overestimates the summer peak flow by 12% and the

autumn streamflows by 25% when compared with

pseudo-observation 3. The differences are expected to

be reduced after the bias correction of the CRCM–

CGCM3 ensemble simulations.

d. Impact of the nonstationary climate model bias on
streamflow

SWAT was fed by each member of the CRCM–

CGCM3 ensemble corrected using each member of the

CRCM–ECHAM5 ensemble as pseudo-observation al-

ternately. Thirty hydrological simulations were obtained

for each basin, which served to estimate the hydrological

indicators.

Figures 6 and 7 show the boxplots of the relative error

[as computed with Eq. (7)] on monthly streamflow for

the Outardes River basin and the Nechako River basin,

respectively. The bias correction generally reduces the

error on monthly streamflow in the reference period.

Over the Outardes River basin, the median in the Qm

FIG. 3. Structure of monthly bias for the Outardes River basin (top) bTmin
vs bP and (bottom) bTmax

vs bP in the (a),(b),(e),(f) reference and

(c),(d),(g),(h) future periods (a),(c),(e),(g) before and (b),(d),(f),(h) after bias correction.
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values is close to 0% after bias correction for the various

pseudoreality observations. The error dispersion is also

considerably reduced after bias correction. Similarly to

the reference period, the direction of the change of the

median values shifts from positive to (almost) negative

values after bias correction in the future period. The bias

correction can lead to improvement of the median error

(e.g., from 22% to 3%, from 9% to27%, and from 18%

to 1% for pseudoreality observations 1, 2, and 3, re-

spectively). The error dispersion is slightly reduced in

the future period, depending on the pseudoreality ob-

servations used for evaluation.

The results for the Nechako River basin are rather

similar to the results for the Outardes River basin: the

bias correction in the reference period reduces both the

median error and the dispersion of the error on monthly

streamflow. In contrast, the median error slightly in-

creases in the future period (for pseudo-observations 2

and 3), despite a reduction of the dispersion in the

monthly streamflow. Of these results for both catch-

ments, we can conclude that in the future period, the

median error and dispersion are somewhat reduced by

the bias correction.

The results for the other indicators are mixed. The

median error (from the three pseudo-observations) of

the HF10 varies from24% to213.7% for the Outardes

River basin and from 212.6% to 10.5% for the Ne-

chako River basin after bias correction in the reference

period (Table 2). This suggests that the performance

of the bias-correction method is site dependent. For

instance, Chen et al. (2013a) show that the bias-

correction methods are sounder for certain basins

than for others, so that the performance of the bias-

correction method varies according to the hydrological

regime of the basin. In addition, Muerth et al. (2013)

claim that the bias correction may affect different hy-

drological processes in different ways; those processes

are intertwined in the hydrological model, and runoff is

sometimes affected in unpredictable ways. Regarding

the future period, Table 2 shows that the bias correction

does not reduce the error on hydrological indicators

when the bias is nonstationary for the Outardes River

basin; however, for the Nechako River basin the error is

somewhat corrected.

e. Impact of climate change signals on hydrological
indicators

The expected impact of climate change on streamflow

is analyzed with the quantification of the climate change

signal (CCS) on hydrological indicators—the relative

differences in the indicators between the reference and

future periods. Figure 8 shows the relative change [as

computed with Eq. (8)] on monthly streamflow calcu-

lated with both uncorrected and bias-corrected CRCM–

CGCM3 simulations. For the Outardes River basin, the

relative change on monthly streamflow is in the same

direction in both the uncorrected and bias-corrected

CRCM–CGCM3 simulations, with a positive CCS from

November to May and a negative or close to zero

CCS for the rest of the year. The CCS signal over the

FIG. 4. As in Fig. 3, but for the Nechako River basin.
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Nechako River basin indicates a similar direction in

both the uncorrected and bias-corrected CRCM–CGCM3

simulations (positive from October to June and negative

in summer).

Regarding the magnitude of the CCS, it can be seen

that, for both catchments, the relative changes in monthly

streamflow obtained with bias-corrected CRCM–CGCM3

simulations are very close to the changes obtained with

uncorrected CRCM–CGCM3 simulations. The only ex-

ception is the beginning of the flood (in April), where

differences are higher.

The larger positive changes of monthly streamflow for

winter and spring could result from increase in tem-

perature, which would lead to less snow and more liquid

precipitation (Troin et al. 2015). The small negative

change in summermonthly discharge could be explained

by the increase in evapotranspiration due to the increase

in temperature, thus reducing streamflow (DesJarlais

et al. 2010).

The impact of the CCS on high- and low-flow in-

dicators is summarized in Table 3. Over the Outardes

River basin, the direction and the magnitude of the

relative changes derived from the uncorrected and bias-

corrected CRCM–CGCM3 simulations are comparable.

The CCS onHF2 ranges from 22.5% to 43.1%with bias-

corrected CRCM–CGCM3 simulations that encom-

passes the value of the CCS on HF2 (25%) from

uncorrectedCRCM–CGCM3 simulations. However, some

discrepancies between uncorrected and bias-corrected

CRCM–CGCM3 simulations can be noticed for

HF10, with a CCS value of 77.7% for the uncorrected

CRCM–CGCM3 simulations compared to the 33.7%–

58.4% range for the bias-corrected CRCM–CGCM3

simulations. Similar findings are noticeable for L7F2

over that catchment.

Regarding the Nechako River basin, the CCS on HF2

and HF10 are positive with bias-corrected CRCM–

CGCM3 simulations and negative with uncorrected

CRCM–CGCM3 climate simulations. The CCS on L7F2

is of smaller magnitude in the bias-corrected CRCM–

CGCM3 simulations than in the CRCM–CGCM3 un-

corrected simulations.

For the investigated catchments, the direction of the

relative changes on the hydrological indicators obtained

with bias correction is generally the same as for the

changes obtained with uncorrected climate simulations.

The magnitude of the CCS is also comparable for most

hydrological indicators. The only exception is the CCS

on high flows over the Nechako River basin, which shifts

from negative to positive values after bias correction.

The shift of direction on climate change signal was ob-

served in the catchment with the smaller biases (see

Fig. 2), so the nonstationarity of bias can have more

influence on the performance of bias correction when

biases are small.

It was recently stated that the bias correction is safe to

use in order to produce coherent present and future

hydroclimatic scenarios for adaptation strategies, since

FIG. 5. Hydrographs for the (a) Outardes and (b) Nechako River basins over the reference period (1971–2000) forced by the uncorrected

climate model and the pseudo-observations.
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it does not significantly alter the CCS of hydrological

indicators (Muerth et al. 2013). However, our results

demonstrate that the CCS on extreme hydrological in-

dicators are less stable than that on mean monthly

streamflow, and that the CCS can change when the bias

correction is made under nonstationary conditions.

4. Conclusions

Climate change impact studies on water resources

have a large source of uncertainties. The uncertainties

arise from the climate scenarios, the climate model, the

statistical postprocessing and the hydrological model.

These uncertainties have a different weight on the pro-

jected future change in streamflow. Graham et al. (2007)

found that GCM forcing has a larger impact on the

projected hydrological changes than the selected emis-

sion scenario or RCM. The choice of hydrological model

also has an important impact on the climate change re-

sponse in terms of hydrological indicators (e.g., Ludwig

et al. 2009). Regarding the uncertainty related to bias

correction, Chen et al. (2013a) showed that the use of

only one bias-correction method could give misleading

results in climate change impact studies.

Bias correction is applied under the main assumption

that bias is time invariant; however, this assumption is

being challenged. To the authors’ knowledge, the un-

certainty related to the time invariance of the bias on

hydrological climate change impact studies has not

been explored. This study therefore assesses the im-

pact of one statistical bias-correction method under

nonstationary conditions on hydrological indicators

with the pseudoreality approach. Comparison with

other sources of uncertainty is out of the scope of the

present study.

The pseudoreality approach used in the present study

considers each simulation in the CRCM–ECHAM5

ensemble as one pseudoreality observation; the pseu-

doreality observations are then used to correct the cli-

mate model (i.e., the CRCM–CGCM3) ensemble

simulations in the reference period. The pseudoreality

approach also includes the SWAT hydrological model.

First, the statistical relationship established in the

reference period between the climate model simulation

and the pseudoreality observations is used to correct the

future climate model simulation. The selected bias-

correction method is the distribution-based DT method.

Second, the uncorrected and bias-corrected CRCM–

CGCM3 simulations are used to drive SWAT. Finally,

four hydrological indicators in the reference and future

periods are estimated from the hydrological simulations.

The main findings of this study are as follows:

FIG. 6. Boxplots of the relative errors onQm for the Outardes River basin, between the indicator obtained from climate model (labeled

‘‘C.M.’’) simulations and from the pseudo-observations [as computed with Eq. (7)] with and without bias correction, for the reference

(1971–2000) and future (2041–70) periods. On each box, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, and the whiskers extend to the 99th percentile.
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1) Under nonstationary conditions, biases remain (in

precipitation and temperature) after bias correction

in the future period, which are comparable to the

biases of uncorrected climate simulations. Further-

more, the bias correction could change the structure

(i.e., precipitation vs temperature) of the biases in

the future period.

2) Bias correction decreases the error on monthly

streamflow for the reference period. In the future

period, the median error and dispersion are some-

what reduced.

3) The climate change signals on hydrological indica-

tors, obtained with uncorrected and bias-corrected

simulations, are similar in magnitude and direction

for most of the hydrological indicators. Regarding

the high-flow indicators, the findings are mixed and

more site dependent.

Our results show that the temporal structure of the bias

changes after the application of bias correction. The change

of structure in bias with time results from both the non-

stationary of bias and the natural variability of the climate.

In our pseudoreality approach, both features partly explain

the ‘‘poor’’ performance of the bias-correction method.

The influence of the natural variability on bias correction

has been recently explored by Chen et al. (2015).

The efficacy of the bias correction has been also re-

cently debated. Eden et al. (2012) argue that model

errors caused by parameterization and orography can

reasonably be corrected by bias correction, but not for

systematic bias in large-scale atmospheric states. Our

study shows that bias correction under a nonstationary

bias is an additional source of uncertainty for impact

studies. An adjustment of the climate variables to

correct for model biases is often necessary for a

meaningful translation of climate projections to the

hydrological scale. However, as the future bias is un-

known, both bias-corrected and uncorrected climate

variables should be considered in order to evaluate the

effect of bias correction on the climate change signal on

hydrological indicators (e.g., Muerth et al. 2013; Troin

et al. 2015). Furthermore, a bias reduction could be

achieved on the basis of a better understanding of the

cause of biases in climate models (Addor and

Seibert 2014).

Our pseudoreality approach rests on a physically

based, semidistributed hydrological model. Recent

studies showed that the choice of the hydrological model

strongly affects the estimation of climate change re-

sponse of impacts on hydrological indicators, especially

those related to low flows (Maurer et al. 2010; Najafi

et al. 2011; Velázquez et al. 2013). Further investigations
will be dedicated to an ensemble of hydrological

models with different degrees of complexity in order to

take into account the uncertainty related to the

hydrological model.

FIG. 7. As in Fig. 6, but for the Nechako River basin.
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The study of Teutschbein and Seibert (2013) assessed

several bias-correction methods under contrasting

conditions. Their findings were that simpler methods

(e.g., the linear transformation) result in large de-

viations and are the least reliable under changed con-

ditions; they recommended the use of a more complex

method, such as the distribution mapping. Our results

show that even a complex method, such as DT, leads to

important deviations in future biases. Further in-

vestigations based on the pseudoreality approach

with a range of bias-correction methods are therefore

necessary in order to generalize our findings. In addi-

tion, the experiment should be repeated in basins

where the biases (in reality and pseudoreality) have a

comparable magnitude in order to extend our

conclusions.

Finally, the pseudoreality approach used in this study

is based on two CRCM–GCM combinations; additional

RCMs should be included to reinforce the results, in

particular, to fill the gap of the bias magnitude between

reality and pseudoreality. This study focuses on two

northern-latitude catchments where the hydrological

cycle is dominated by snow accumulation and melting.

The results could differ for rainfall-driven catchments

where the hydrological response will be more sensitive

to biases in precipitation.

TABLE 2. Median relative error (%) in hydrological indicators obtained from the climate model simulations and the pseudo-

observations [as computed with Eq. (7)] with and without bias correction, for the reference (1971–2000) and future (2041–70) periods

over the Outardes and Nechako River basins.

Error (%) uncorrected

climate model (ref)

Error (%) bias-corrected

climate model (ref)

Error (%) uncorrected

climate model (fut)

Error (%) bias-corrected

climate model (fut)

Outardes

HF2 1.8 26.7 17.2 23.5

HF10 24.0 213.7 18.6 226.9

L7F2 231.4 215.8 29.5 36.6

Nechako

HF2 23.8 23.4 210.8 26.0

HF10 212.6 0.5 230.2 27.5

L7F2 226.5 7.8 56.8 31.0

FIG. 8. Relative changes inQm between the reference and future periods [as calculated with Eq. (8)], with the indicator obtained with

the uncorrected and bias-corrected climate model simulations (labeled ‘‘Bias correc. C.M.’’) for the (left) Outardes and (right) Nechako

River basins.
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