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Abstract: Spatial structure of cities is the substratum over which human urban 
life develops. Understanding the relevance of the streets that form such 
substratum is fundamental to understand the movements of people in the city. 
Our purpose in this study is to propose and explore methods to find relevant 
streets sets that conforms the basis of complex urban networks. We used two 
methods based on previous work by Volchenkov and Blanchard (2008) and 
Shetty and Adibi (2005), and a method developed by us. To illustrate the use of 
these tools, we performed an analysis of the main streets network of the coastal 
city of Ensenada, Mexico. 
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1 Introduction 

Spatial structure of a city is a regular and permanent substratum on which human 
functions are developed. Indeed, sets of streets, intersections and buildings form the basic 
systems on which human urban life is developed. One relevant factor of urban structure is 
connectivity (e.g., Filin and Vered, 2009; Krüger, 1979, 1980; Marshall, 2005; Sampson, 
2004) which is related to several social and economic phenomena since crime to 
community health. 

In geographical and urban studies, entropy has been used broadly to study spatial 
structure and population concentration (Batty, 1972, 1974, 1976), spatial interaction 
(Honma et al., 2010; Nijkamp and Reggiani, 1988; O’Kelly, 2010; Wilson, 1970) spatial 
urban segregation (Massey and Denton, 1988; White, 1983, 1986; Wong, 2002; Yeh and 
Li, 2001) and urban sprawl (Rashevsky, 1955; Tsai, 2005). As a tool for spatial analysis, 
graph entropy has been recently suggested to find relevant streets related with their 
connectivity and centrality (Shetty and Adibi, 2005; Volchenkov and Blanchard, 2008). 

Given that the urban structure can be abstracted using the techniques of space syntax 
(Hiller, 1996; Marshall, 2005) and following works of Shetty and Adibi (2005) and 
Volchenkov and Blanchard (2008), we developed a new technique to find relevant streets 
based on a graph-theoretical notion of entropy which incorporates public and private 
services on streets. To illustrate the theory, we performed a study of the main streets 
network of the Mexican city of Ensenada. 

The structure of this paper is follows: in the next section the mathematical 
fundamentals on graph theory and graph entropy are developed. Then, in Section 3, 
Ensenada city main streets network is analysed, and results are showed. The final section 
is devoted to the concluding remarks. 

2 Graph theory and graph entropy 

A network can be mathematically represented as a graph G(V, E) using two sets. First 
one, a non-empty and finite set of vertices or nodes V, and second one a non-empty and 
finite set of links E. Then each element of E relates one element of V with another 
element of V. Formally, each e ∈ E is associated to a couple (vi, vj) ∈ V × V. In our study, 
we are interested only in undirected graphs without loops, then the following restrictions 
must be made to definition: if (vi, vj) is associated to e, then (vj, vi) is also associated with 
e, and no couple of the kind (vi, vi) is associated to an element of E. 

Given a graph with a vertex set V, the degree of a vertex v ∈ V is the number of edges 
associated a couple in V × V containing v, and it is symbolised by deg(v). Another graph 
measure is betweenness. It was defined by Freeman (1977) as follows. Given a vertex vk 
∈ V in a graph G(V, E) and an couple of vertices (vi, vj), where i ≠ j, the partial 
betweenness bij(vk) is the number of shortest paths connecting vi and vj and passing 
through vk, divided by the total number of shortest paths connecting vi and vj. Hence, if 
gij(vk) denotes the number of shortest paths connecting vi and vj and passing through vk, 
and gij denotes the total number of shortest paths connecting vi and vj, then 

( ) ( ) /ij ij ijk kb g gv v=  (1) 
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can be understood as the probability that vertex vk belongs on a randomly selected 
geodesic connecting vi and vj. The overall centrality of a vertex vk is defined as the sum of 
its partial betweenness for all unordered pairs of vertex, 

( ) ( )
N N

B ijk ki j j
C bv v

<
=∑ ∑  (2) 

where i ≠ j ≠ k, and N is the total number of vertex in the graph. To understand graph 
entropy is necessary introduce first the concept of entropy. It is a parameter used to 
describe the uncertainty of a system. It is based on the measure of the probability 
distribution of the states reachable by a system. In 1948, Shannon proposed a general 
entropy formulation: 

1
( , ) logi ii

S P K P P
Ω

=
Ω = − ∑  (3) 

where Ω is the number of possible states in the system, Pi in the probability of the ith 
state, and K is a constant. Generally, K = log210 is suitable. Using a change on the base of 
the logarithm, entropy can be rewritten as: 

21
( , ) logi ii

S P P P
Ω

=
Ω = −∑  (4) 

The concept of entropy for the study of graphs was introduced by Rashevsky (1955) for 
the study of graph topology. Köhner (cited by Dehmer and Mowshowitz, 2011) 
introduced a graph entropy measure to determine the performance of a best possible 
encoding of messages emitted by an information source where the symbols belong to a 
finite vertex set. 

In the context of our work, graph entropy is defined by Volchenkov and Blanchard 
(2008) and Shetty and Adibi, (2005). In the work of Volchenkov and Blanchard (2008), 
there are two formulations for the specification of probabilities associated with each 
vertex v ∈ V. The first one uses the concept of local connectivity of each vertex. Using a 
probability distribution defined as: 

deg( ) / 2 ,i iπ v M=  (5) 

where M = | E | is the total number of links in the graph. Volchenkov and Blanchard 
(2008) use another probability distribution based on the concept of betweeness. Using 
equation (2), this probability is defined as: 

( ) / ,i B Bip C Cv=  (6) 

where ( )
1

.
N

B B ii
C C v

=
=∑  

Using either kind of probability distributions, the graph entropy, which it is 
understood as the structural information of a graph G, it is defined as: 

( )21
( , ) log 1/

N
i ii

H G P p p
=

=∑  (7) 

Following Volchenkov and Blanchard (2008), if P is the probability distribution that is 
function of node’s degree, then entropy is called connectivity entropy. If P is the 
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probability distribution related to the betweeness of a node, the entropy is named 
centrality entropy. 

The entropy H(G, P) has the property that it is additive independently of how network 
is being divided into parts, therefore it can be calculated as the sum of the partial 
entropies of its single nodes. Volchenkov and Blanchard (2008) defined the relevance of 
a node in terms of its contribution to the entropy. It could be estimated by the entropy 
participation ratio (EPR), which is defined as 

( ) ( )2log ,/ ( , ) 1/i i ih p H G P p=  (8) 

where H(G, P) can be either connectivity entropy or centrality entropy. 
Shetty and Adibi (2005) suggested an alternative method to discover relevant nodes 

in a graph. The main idea is that the result of adding or removing edges in a graph affects 
its overall connectivity. Then the interpretation of relevant nodes of a graph is that there 
are those who have the most effect in the graph entropy when they are removed from the 
graph. The procedure suggests is as follows: 

1 entropy of the whole graph must be calculated 

2 an arbitrary node is removed from the graph and the graph entropy of the remaining 
graph is calculated. 

This step should be repeated until all nodes are removed. In order to measure the effect of 
removing the node, the following quantity must be calculated: 

( ) ( )2/ log ./i ieffect v viH H H Hv ≠ ≠=  (9) 

In our problem, we have not only the topology of the graph, but also socio-economical 
data must be incorporated to understand the relevance of streets with respect to public 
and private infrastructure as hospitals, schools, cultural centres and so on. In order to 
incorporate this kind of data, we propose a new probability distribution on the node that 
incorporates the ‘density’ of the social phenomena in which we can be interested. The 
new probability distribution is defined as follows: 

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )( )/ ,
i i

i i i k i i kk N i k Nv v
p δ g g δ g gv v v v v v v

∈ ∈
= − − − −∑ ∑ ∑  (10) 

where δ(vi) is the degree of node vi, g(vi) quantifies the density of the socio-economical 
data at node vi, g(vk) is the corresponding quantity at node vk which is adjacent to node vi, 
and N(vi) is the size of the neighbourhood of node vi. 

3 Study of Ensenada’s main streets network 

Ensenada is a coastal city located in the Mexican Pacific Ocean shore [see Figure 1(a)]. It 
is the capital of Mexican State of Baja California. Ensenada has a population of  
466,814 inhabitants. The commercial relevance of the city is based in its closeness to the 
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American port of San Diego and it is the Mexican offshore port most near to Asia. The 
city is home of the Center of Scientific Research and Higher Education of Ensenada 
(CICESE for its acronym in Spanish) which is the more important oceanographic 
research centre in Mexico. Also, Ensenada is a strategic place for Mexican homeland 
security and the city is the base of important Mexican Navy and Mexican Air Force 
facilities. 

Ensenada’s main street network is formed by 44 streets with 141 intersections 
between them. The main streets pattern is showed in Figure 1(b). 

Figure 1 (a) Ensenada City (b) Ensenada’s main streets (see online version for colours) 

 

(a) 

 

(b) 
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Table 1 Results of computed structural measures for the Ensenada’s streets network 

Street name Node Grade EPR 
connectivity 

EPR 
centrality 

Shetty’s 
entropy 

Ambar 1 8 0.0497 0.0828 2.9031 
Ryerson 2 2 0.0172 0 2.9264 
Alvaro Obregon 3 2 0.0172 0.0012 2.9338 
Ruiz 4 3 0.0237 0.0057 2.9245 
Gastelum 5 1 0.0098 0 2.9357 
Miramar 6 3 0.0237 0.005 2.9335 
Riveroll 7 4 0.0297 0.0111 2.9364 
Mar 8 7 0.0451 0.0338 2.9379 
Reforma 9 11 0.0622 0.1495 2.9316 
Bronce 10 2 0.0172 0 2.9322 
Alvarado 11 4 0.0297 0.0056 2.9317 
Blancarte 12 4 0.0237 0.0047 2.9363 
Castillo 13 4 0.0297 0.0056 2.9317 
Benito Juarez 14 8 0.054 0.0577 2.9292 
Adolfo Lopez Mateos 15 8 0.0497 0.0888 2.9325 
Lazaro Cardenas 16 7 0.0451 0.0182 2.9184 
Doctor Pedro Loyola 17 3 0.0237 0.0122 2.9291 
Estancia 18 3 0.0237 0.0402 2.9085 
General Juan Zertuche 19 1 0.0098 0 2.9262 
Ignacio Manuel Altamirano 20 1 0.0098 0 2.9324 
Manuel Ponce 21 1 0.0098 0 2.9324 
De Las Aguilas 22 3 0.0237 0.0642 2.9254 
Gregorio Torres Quintero 23 1 0.0098 0 2.9324 
Libertad 24 1 0.0098 0 2.9324 
Eusebio Francisco Kino 25 1 0.0098 0 2.9324 
Cortez 26 3 0.0237 0.0642 2.9254 
Primer Ayuntamiento 27 1 0.0098 0 2.9324 
Del Magisterio 28 1 0.0098 0 2.9371 
Del Puerto 29 1 0.0098 0 2.9371 
Benito Juarez 1 30 1 0.0098 0 2.9371 
16 de Septiembre 31 2 0.0172 0.0055 2.9299 
Diamante 32 6 0.0403 0.1289 2.9059 
18 de Marzo 33 1 0.0098 0 2.9371 
Niños Heroes 34 1 0.0098 0 2.9371 
Francisco Gonzalez Bocanegra 35 1 0.0098 0 2.9371 
Cuahutemoc 36 1 0.0098 0 2.9371 
Jaime Nuno 37 1 0.0098 0 2.9371 
Pipila 38 4 0.0297 0.0178 2.9109 
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Table 1 Results of computed structural measures for the Ensenada’s streets network 
(continued) 

Street name Node Grade EPR 
connectivity 

EPR 
centrality 

Shetty’s 
entropy 

Real Del Castillo 39 1 0.0098 0 2.9339 
Aseguradores 40 1 0.0098 0 2.9339 
General Lazaro Cardenas1 41 2 0.0172 0.0376 2.9465 
Pablo Orta 42 1 0.0098 0 2.9465 
Mexico 43 18 0.0863 0.1597 2.6945 
Zertuche 44 1 0.0098 0 2.9465 

Figure 2 EPR for connectivity of the main streets of Ensenada (see online version for colours) 
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Figure 3 EPR for centrality of the main streets of Ensenada (see online version for colours) 
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This network was coded as a dual graph where streets are nodes and intersections are 
links. We build the 44 × 44 adjacency matrix for the graph and we computed both 
connectivity entropy and centrality entropy. The value for connectivity entropy is 2.9360 
and for centrality entropy is 3.1740. It must be noted that the value of both entropies for 
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the fully connected graph on 44 nodes is log2N = log2(44) = 5.4594. We use equation (8) 
to calculate the EPR for both connectivity and centrality. Also, with equation (9) we 
computed the relevant nodes according to Shetty and Adibi’s method, which for 
simplicity we named as Shetty’s entropy. Results can be observed in Table 1 and in 
Figures 2 and 3. 

Using result for connectivity EPR and for centrality EPR, we create a street’s 
hierarchy showed in Figures 4 and 5. 

Figure 4 Street’s hierarchy for connectivity EPR (see online version for colours) 
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Figure 5 Street’s hierarchy for centrality EPR (see online version for colours) 
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The interpretation of the results for EPR’s entropies is as follows. Connectivity entropy is 
a local measure of the structure of the network, whereas centrality entropy is a global 
measure of the structure of the network. In spatial syntax, the intelligibility of a network 
is defined as the degree of correlations between connectivity and centrality (Hiller, 1996). 
In our case, connectivity EPR and centrality EPR have a Pearson correlation index of  
–0.684130, whereas a correlated set of data must have a Pearson correlation index close 
to 1. Since in our case connectivity EPR and centrality EPR are not correlated, we can 
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conclude that Ensenada’s street network has a poor intelligibility. This can be seen in a 
graphical way in Figure 6. 

Figure 6 The rank-EPR plot (in LN-LN scale) of the Ensenada’s streets network (see online 
version for colours) 
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Relevant streets for connectivity, in order of relevance, are presented in Table 2. 
Table 2 Relevant streets under connectivity EPR criteria 

Node number Street name Grade 

43 Mexico 18 
9 Reforma 11 
14 Benito Juarez 8 
1 Ambar 8 
15 Adolfo Lopez Mateos 8 
8 Mar 7 
16 Lazaro Cardenas 7 
32 Diamante 6 

Obviously, nodes with greater grade are more relevant for connectivity. It is worth 
noticing that the sub-network formed by the relevant streets it is composed by two clearly 
distinguishable clusters, one around Reforma Avenue and the other around Mexico 
Avenue. These clusters are connected only by the Diamante Avenue, which is therefore a 
critical node. 

For the case of centrality EPR, there are only three relevant nodes, 43, 9 and 32, 
which correspond to Mexico Avenue, Reforma Avenue and Diamante Avenue. This 
result reinforces our conclusion of the EPF connectivity analysis. Then we can asseverate 
that the sub-network of Ensenada’s main streets is formed only by three nodes that 
connect Reforma Avenue and Mexico Avenue through Diamante Avenue. Mexico and 
Reforma avenues are North-South Streets and Diamante Avenue is a East-West street. 

Now, we interpret results from Shetty’s entropy. Connectivity entropy for the whole 
networks is the constant line in Figure 7, whereas the shaped line corresponds to the 
connectivity entropy obtained by removing the corresponding node. It is possible to 
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observe that there is only one relevant node that increase entropy connectivity, namely 
node 42 (Pablo Orta Avenue), whereas the removal of node 43 (Mexico Avenue) 
decreases substantially the connectivity of the whole network. 

It is important to remark that method suggested by Volchenkov and Blanchard (2008) 
and method proposed by Shetty and Adibi (2005), both are complementary and give us 
different information about the structure of the whole network. 

Figure 7 Shetty’s entropy for Ensenada’s street network (see online version for colours) 
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Now, we show the results obtained using our proposed joint entropy [equation (10)].  
For this, we first consider the presence of public and private hospitals as socio-
economical data. There are 24 hospitals and health clinics in Ensenada city. Seventeen 
are public hospitals and the rest are private. Only five of them are on main streets (see 
Table 3). 

Table 3 Hospital’s location in Ensenada’s main street network 

Hospital name Main street Node number 

Unidad de Especialidades Medicas Gastelum 5 

Hospital General de Zona No. 8 Reforma 9 

Hospital General Clinica 8 Urgencias Reforma 9 

Hospital San Jose General Lazaro Cardenas 41 

CARDIOMED Alvaro Obregon 3 

Sanatorio Naval de Ensenada Lazaro Cardenas 16 

To find relevant nodes related to the presence of hospitals, we used the previous defined 
concept of EPR. As there are very few hospitals on the main streets, this means that the 
joint entropy related to the hospitals must be similar to connectivity entropy. This can be 
seen in the Figure 8. 

Now, if our socio-economical data is the presence of economic spatial units such as 
retail stores, shopping centres, drugstores, hardware stores, cloth stores and so on, we 
would expect to see a difference between the joint EPR and the connectivity EPR. 
However, we can see in Figure 9 that the behaviour of both EPRs is very similar. 
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Figure 8 Joint EPR and connectivity EPR for the Ensenada streets network with hospitals  
(see online version for colours) 
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Figure 9 Joint EPR and connectivity EPR for the Ensenada streets network with economic spatial 
units (see online version for colours) 
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It seems that for our proposed joint entropy the number of economic units by street is of 
no relevance. Then we can interpret this as follows: the spatial structure is the relevant 
phenomena and the human activities and services rest over that structure having no real 
play with respect to the behaviour of city. 

4 Conclusions 

In this work, we have described three methods to discovering relevant streets in urban 
networks. Relevance of streets is function of their connectivity and their centrality. The 
first method called EPR allowed us to measure the intelligibility of the whole main street 
network of Ensenada City. We found a poor intelligibility in this case. We also found that 
the sub-network of relevant nodes is formed by two clusters liked by a single critical 
node. Using the second method, we found that there is only one relevant node that 
increases entropy connectivity, whereas the removal of only one node decreases 
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substantially the connectivity of the whole network. This is a consistent result because the 
removed node corresponds to a street with high connectivity and centrality measures. The 
third method showed, at least for the socio-economical data we considered, that the 
density of economic spatial units is completely determined by the topology of the 
network. 

Our results show that graph entropy and specifically EPR method and Shetty’s 
entropy, are suitable to perform spatial syntax analysis. In particular, both tools can be 
used by planning agencies to understand the underlying relevant structure of the urban 
patterns. 
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